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Abstract This paper comprehensively surveys the de-

velopment of face hallucination (FH), including both

face super-resolution (FSR) and face sketch-photo syn-

thesis (FSPS) techniques. Indeed, these two techniques

share the same objective of inferring a target face im-

age (e.g. high-resolution face image, face sketch and

face photo) from a corresponding source input (e.g. low-

resolution face image, face photo and face sketch). Con-

sidering the critical role of image interpretation in mod-

ern intelligent systems for authentication, surveillance,

law enforcement, security control, and entertainment,

FH has attracted growing attention in recent years. Ex-

isting FH methods can be grouped into four categories:
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Bayesian inference approaches, subspace learning ap-

proaches, a combination of Bayesian inference and sub-

space learning approaches, and sparse representation-

based approaches. In spite of achieving a certain level

of development, FH is limited in its success by com-

plex application conditions such as variant illumina-

tions, poses, or views. This paper provides a holistic

understanding and deep insight into FH, and presents

a comparative analysis of representative methods and

promising future directions.

Keywords Face hallucination · face sketch-photo

synthesis · face super-resolution · heterogeneous image

transformation

1 Introduction

Face images, compared to other kinds of biometrics

such as fingerprint, iris, and retina, can be acquired

in a more convenient, natural, and direct way because

they are collected in a non-intrusive manner (Jain et al,

2000). Consequently, a growing number of face image-

based applications have been developed and investi-

gated. These include face detection (Zhang and Zhang,

2010), alignment (Liu, 2009), tracking (Ong and Bow-

den, 2011), modeling (Tao et al, 2008), and recogni-

tion (Chellappa et al, 1995; Zhao et al, 2003) for se-

curity control, surveillance monitoring, authentication,

biometrics, digital entertainment and rendered services

for a legitimate user only, and age synthesis and estima-

tion (Fu et al, 2010) for explosively emerging real-world

applications such as forensic art, electronic customer re-

lationship management, and cosmetology.

The intrinsic fluidity of face imaging and uncontrol-

lable extrinsic imaging conditions (such as an intended

target deliberately concealing his/her identity) means
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Fig. 1 Diagram of face hallucination

that suitable face images for processing and identifying

a person cannot always be obtained. In cases where low-

resolution face images are acquired by live surveillance

cameras at a distance or face sketches are drawn by an

artist, however, face hallucination (FH) techniques can

be used to enhance low-resolution images and trans-

form sketches to photos and photos to sketches for the

subsequent utilizations.

It has been widely acknowledged that FH can be

used to generate imagery or information from an input

source face image with different modalities (resolution,

style, or imaging modes) (Baker and Kanade, 2000a).

In this paper, FH refers to both face super-resolution

(FSR) and face sketch-photo synthesis (FSPS) because

they share the similar intrinsic mathematical model;

that is, they infer an image lying in an image space from

its corresponding counterpart lying in another space. A

brief introduction to both techniques is given below.

Low-resolution images impose hard restrictions on

real world applications dealing with face recognition

and high-resolution display. We intend to approximate

high-resolution images from low-resolution images, us-

ing the super-resolution technique. Available super-res-

olution techniques can be grouped into two categories:

reconstruction-based approaches and learning-based ap-

proaches. Reconstruction-based methods estimate a high-

resolution image from a sequence of blurred and down-

sampled low-resolution images (Elad and Feuer, 1997,

1999; Hardie et al, 1997) and there are inherent limi-

tations in relation to increasing the magnification fac-

tor (Baker and Kanade, 2002). In recent years, learn-

ing-based approaches have been proposed and obtained

competitive results for various low-level vision tasks

(Fan and Yeung, 2007; Freeman and Pasztor, 1999; Free-

man et al, 2000, 2002), including image hallucination

(Sun et al, 2003; Xiong et al, 2009), image analogy

(Hertzmann et al, 2001), image stitching (Brown and

Lowe, 2007), cartoon character synthesis (Yu et al, 2012b,a),

and texture synthesis (Efros and Leung, 1999; Efros and

Freeman, 2001; Zalesny et al, 2005). Learning-based

methods explore mapping relations between high- and

low-resolution image pairs to infer high-resolution im-

ages from their low-resolution counterparts. Compared

to reconstruction-based methods, learning-based meth-

ods achieve higher magnification factors and better vi-

sual quality, especially for single-image super-resolution

(Lin et al, 2007, 2008). This is also the main reason un-

derlying the proposal of FSR algorithms. The applica-

tion scenario therefore needs to be constrained in such

a way that more specific prior knowledge, e.g. human

skin color, the strong structure of faces, and gender

information, can be further exploited to improve the

estimation.

In searching for criminal suspects, a photo of a crim-

inal suspect is not always available and thus the best

substitute may be a sketch drawn by an artist with the

aid of eyewitnesses. However, because of the great dif-

ference between face sketches and face photos in both

geometry and texture, using direct face recognition to

identify a criminal suspect performs poorly when a sketch

is compared with an existing photo gallery (Gao et al,

2008b; Tang and Wang, 2004). To reduce the visual

difference between sketches and photos, sketches and

photos can be transformed to the same modality. There

are two ways to accomplish this: transformation of the

sketches to photos, or transformation of the photos to

sketches (FSPS for short). Note that an FSPS algorithm

is not constrained to face recognition but can also be
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Fig. 2 Tree diagram for different categories of face hallucination algorithms

Table 1 Notations

Symbols Descriptions

I in Input of FH, used when FSR is not distinguished from FSPS

I out Output of FH corresponding to I in

IH High-resolution image for FSR

IL Low-resolution image corresponding to IH

I g
H Global high-resolution face image used in some methods for FSR

I l
H Local high-resolution face image corresponding to I g

H used for FSR

IS Face sketch for FSPS

IP Face photo for FSPS

x , x i sketch patch or high-resolution image patch, or observation feature of a pixel on a sketch

y , yi photo patch or low-resolution image patch, or observation feature of a pixel on a photo

K Number of nearest neighbors

applied to digital entertainment (Iwashita et al, 1999;

Koshimizu and Tominaga, 1999; Wang and Tang, 2009;

Yu et al, 2012b).

Both learning-based FSR and FSPS generate a tar-

get image from a corresponding input source image by

using training image pairs (e.g. low- and high-resolu-

tion image pairs and sketch-photo pairs) based on vari-

ous machine learning algorithms. In the learning stage,

learning-based FSR and FSPS learn the underlying re-

lation between training image pairs and in the inference

stage, the output target image corresponding to the in-

put source image is predicted via the learned mapping

relations. Fig. 1 illustrates the framework for FSPS and

FSR, from which we can see that the main difference

between the two techniques is that the transformation

between sketches and photos (FSPS) is invertible while

this reversibility is not required in FSR. The mapping

obtained in the learning stage is similar for these two

different applications. It is symmetric for sketch synthe-

sis and photo synthesis, and a synthesis process can be

completed by switching the roles of sketches and pho-

tos of another synthesis process. Thus, an FSPS model

can be constructed from a learning-based FSR model

by adjusting the training image pairs and features used

as the input to the model. In this paper, we therefore

prefer not to differentiate between FSR and FSPS al-

gorithms when they are categorized, except as noted.

As shown in Fig. 1, the mapping learned from the

training image pairs using a machine learning algorithm

is critical to the FH algorithm. This mapping may be

explicit, such as a function mapping from input to out-

put, or implicit, in which it is hidden in the model and

relies on various approaches to construct the output

model. Based on the approaches applied to the model

construction, FH methods can be divided into four cat-

egories: Bayesian inference framework, subspace learn-

ing framework, combination of Bayesian inference and

subspace learning methods, and sparse representation

methods. FH techniques in each of these four categories

may be further classified in a much more detailed man-

ner. Fig. 2 shows these different classes of FH algo-

rithms in a tree diagram.

Table 1 summarizes frequently used notations in this

paper. The rest of this paper is organized as follows.

Methods under Bayesian inference framework are de-

scribed and comprehensively analyzed in Section 2, and

a description of the subspace learning-based methods

follows in Section 3. A compound framework that com-

bines Bayesian inference and subspace learning-based

methods is presented in Section 4. Section 5 discusses
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several methods for FH in the realm of sparse represen-

tation. A comparative analysis of these four categories

and their performance are given in Section 6. Finally,

insights on recent trends and promising future direc-

tions in this field are given in Section 7, and concluding

remarks are made in Section 8.

2 The Bayesian Inference Framework

Bayesian inference exploits evidence to update the state

of the uncertainty over competing probability models.

Bayes’ theorem is critically important in Bayesian in-

ference, and is written as P (A|B) = P (B|A)P (A)
P (B) , where

A and B represent two events in the event space (Gel-

man et al, 2003). Given that I in and I out denote the

input (observation) and output image (to be estimated)

for FH, respectively, the maximum a posteriori (MAP)

decision rule in Bayesian statistics for FH is written as

I ∗out = argmax
I out

P (I out|I in)

= argmax
I out

P (I in|I out)P (I out).
(1)

Since I in is an observation, P (I in) is a constant and

it can be ignored in Eq. (1). In the above equation,

P (I out) is known as the prior, which is learned from

training images pairs, and P (I in|I out) is the likelihood

and can also be taken as a Gaussian form under the as-

sumption that each pixel on I in is identically treated.

For different methods under this framework, P (I in)

and P (I in|I out) take different concrete forms which are

discussed below. Fig. 3 shows a diagram of the Bayesian

inference framework using face sketch synthesis as an

example, and the following figures show the face sketch

synthesis process only except for special explanation. In

Fig. 3, the partition mask is applied to divide images

into patches. Holistic methods such as Tang and Wang

(2002, 2003, 2004) synthesized a sketch as a whole, thus

the partition mask might degenerate to an identical

transformation which actually preserve a whole image

as itself.

2.1 Gradient-based Prior for Data Modeling

Baker and Kanade (2000a) proposed the first FH algo-

rithm. By treating FSR as predicting the lowest level of

the Gaussian Pyramid (Burt, 1981; Burt and Adelson,

1983), this method processes in a pixel-wise manner and

aims to improve the face recognition performance.

The likelihood term P (I in|I out) in Eq. (1) is given

by:

P (I in|I out) ∝ exp
{

− 1

2σ2

∑
m,n

[
Gk(m,n)−

∑
p,q

W (m,n, p, q)G0(p, q)
]2}

,

(2)

where Gk,k = 0, 1, · · · , N is the k-th level Gaussian

pyramid and the level 0 pyramid is the high-resolution

image. The subscripts to the sum index the correspond-

ing pixel on a specific Gaussian pyramid. The weight

W (·) is a function of down-sample factor which mea-

sures the number of overlapped low-resolution pixels

and high-resolution pixels. σ2 is the variance. The like-

lihood mainly considers the fidelity between the low-

resolution image and the down-sample version of the

high-resolution image to be predicted.

The prior P (I out) in Eq. (1) is learned from the spa-

tial distribution of image gradient vectors. The gradient

vector is given by the concatenation of Laplacian pyra-

mids, the horizontal and vertical first- and second-order

derivatives of Gaussian pyramids. The predicted gradi-

ent vector of the high-resolution image corresponding

to the low-resolution input is copied from the gradient

vector of a training high-resolution image. This high-

resolution image is identified by searching the near-

est gradient vector of the input low-resolution image

through all training low-resolution images. Then the

prior is modeled by the errors between the gradients

of the target high-resolution image and the above pre-

dicted gradients. These errors are assumed to be i.i.d.

and the prior P (I out) can be modeled by a Gaussian

distribution with variance σ2
∇,

P (I out) ∝ exp
{

− 1

2σ2
∇

∑
m,n

[
H 0(G0)(m,n)−H 0(m,n)

]2
− 1

2σ2
∇

∑
m,n

[
V 0(G0(m,n))−V 0(m,n)

]2}
,

(3)

where H 0(·) and V 0(·) denote the actual horizontal

and vertical first order derivative of the Gaussian pyra-

mids, and H 0 and V 0 are the corresponding predicted

derivatives, respectively.

Finally, the target high-resolution image is resolved

from the objective function, a combination of the like-

lihood model P (I in|I out) and the gradient prior model

P (I out), by the gradient descent method. The authors

reported that this algorithm enhanced face images by

a factor of 8 (e.g. from 12 × 16 to 96 × 128). This

method was further investigated in their subsequent
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Fig. 3 Bayesian inference framework for sketch synthesis

works (Baker and Kanade, 2000b), (Baker and Kanade,

2002) that demonstrated useful information provided

by the reconstruction constraints (i.e. the prior infor-

mation) reduces with the increase of the magnification

factor.

Inspired by Baker and Kanade (2000a), the gradi-

ent-based prior was carefully explored. Dedeoglu et al

(2004) explored a similar idea for video hallucination

and demonstrated the resolution of a human face video

by a factor of 16 from 8 × 6 to 128 × 96 . Since these

methods search for the nearest neighbor pixel by pixel,

they are time-consuming; furthermore, the pixel-based

strategy is susceptible to noise. Unlike the gradient fea-

ture extracted by Baker and Kanade (2000a), Su et al

(2005) proposed the exploitation of a steerable pyra-

mid to model the prior generated by oriented steerable

filters to extract multi-orientation and multi-scale infor-

mation of local low-level face features. With regard to

the feature of each pixel of the source input, its nearest

neighbor was chosen in a different way from the strategy

in (Baker and Kanade, 2000a,b; Dedeoglu et al, 2004).

Baker and Kanade (2000a) searched the nearest neigh-

bor of an input pixel from the feature of pixels in the

same location on the training images. Su et al (2005)

found its nearest neighbor from the feature of pixels

around the location on the training images, which alle-

viates the requirements for exact face alignment. How-

ever, this method is still subject to high computation

cost due to the high dimension of extracted features.

Their experimental results showed that they could en-

hance a 24×32 face image into its 96×128 counterpart.

2.2 Markov Random Fields-based Method

Markov random fields (MRF) (Li, 2010) characterize

the dependency relationship between neighboring pixels

or features. The principal consideration is given by

P (f i|f 1, · · · , f N ) = P (f i|N(i)) (4)

where f i, i = 1, · · · , N is the i-th feature and N(i) de-

notes the neighborhood. An image can be modeled by

MRF; for example, given that the intensity of each grid

on images is the variable, then the probability of an

image intensity configuration is usually the product of

a data constraint term and a smooth constraint term.

The data constraint term models the fidelity between

the observation and the target output and the smooth

constraint models the local neighborhood relationship

of the target output.

Freeman et al. (1999; 2000; 2002) proposed an ex-

ample-based learning framework for the low-level vi-

sion problem and took super-resolution as one of its

applications. In their seminal works, images (low-reso-

lution images) and scenes (high-resolution images) were

modeled by Markov Random Fields. Both a scene I out
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Fig. 4 Illustration of the Markov network utilized in Free-
man and Pasztor (1999); Freeman et al (2000).

and its corresponding image I in are first divided into

patches {x 1, · · · ,xN} and {y1, · · · ,yN}, respectively.

Each of these patches is represented as a node in the

Markov network as shown in Fig. 4. For any input im-

age patch, K nearest neighbors are searched from the

training image patches to construct the compatibility

matrix Φ(x ,y) between image and scene nodes. Simul-

taneously, K target scene candidate patches are col-

lected from the training scene patches corresponding to

the selected training image patches. Then the neighbor-

hood relationship (smooth constraint) is constructed

from the compatibility matrix Ψ(x ,y) between neigh-

boring scene nodes. The joint probability over a scene

I out and its corresponding image I in can be written as

P (I in, I out) = P (x 1, · · · ,xN ,y1, · · · ,yN )

∝
∏
(i,j)

Ψ(x i,x j)
∏
k

Φ(xk,yk), (5)

where (i, j) indexs a pair of neighboring scene nodes i

and j. The compatibility functions Ψ(x i,x j) and Φ(xk,yk)

are defined by

Ψ(x li,x
m
j ) = exp−‖d

l
ji−d

m
ij‖

2
/2σ2

s ,

Φ(x lk,yk) = exp−‖y
l
k−yk‖

2
/2σ2

p ,
(6)

where dlji(l = 1, · · · ,K) is a vector of the pixel inten-

sities of the l-th possible candidate for the scene patch

x i and lies in the overlap region with the patch x j .
y lk(l = 1, · · · ,K) is the l-th nearest neighbor of the im-

age patch yk. σs and σp are two predefined parameters.

Eq. (1) and Eq. (5) indicate that maximizing a poste-

rior is equivalent to maximizing the joint probability

P (I out, I in) and then we have

P (I in|I out) ∝
∏
k

Φ(xk,yk),

P (I out) ∝
∏
(i,j)

Ψ(x i,x j).
(7)

Bayesian belief propagation (Pear, 1988; Yedidia et al,

2001) is used to find a local maximum of the posterior

probability for the target scene node. The integrated

scene is obtained by merging these patches with an av-

erage of the overlapping regions. In (Bishop et al, 2003),

the model was applied to video sequences, but intro-

duces severe video artifacts. To reduce the number of

artifacts and to obtain coherent resultant videos, an ad-

hoc solution that re-uses the high-resolution solutions

is adopted.

Inspired by the promising results obtained by the

patch-based nonparametric sampling used in texture

synthesis (Bonet, 1997; Chen et al, 2001; Efros and

Leung, 1999; Efros and Freeman, 2001; Liang et al,

2001), Liu et al. (2001; 2007a) proposed a nonparamet-

ric MRF-based FSR method. This two-step global and

local modeling framework assumes that a high-resolu-

tion face image is naturally a composition of two parts-

a global face image corresponding to the low frequency

and a local face image corresponding to middle and high

frequencies,

I out = IH = I lH + I gH . (8)

Under this assumption, the objective function (1) can

be rewritten as

I ∗out = I ∗H = argmax
I g
H ,I

l
H

P (IL|I gH + I lH)P (I lH |I
g
H)P (I gH).

(9)

Since IL mainly consists of the low-frequency part

of IH , then P (IL|I gH + I lH) = P (IL|I gH). The likeli-

hood P (I in|I out) and the prior P (I out) are

P (I in|I out) = P (IL|I gH),

P (I out) = P (I lH |I
g
H)P (I gH).

(10)

In contrast to the aforementioned methods, Liu et al.

(2001; 2007a) did not model the likelihood and prior,

respectively. They constructed a global model for the

terms P (IL|I gH)P (I gH) by using PCA. Given the global

face image I gH , a patch-based nonparametric Markov

network similar to the MRF model in Freeman et al.

(1999; 2000; 2002) is built to model the residual local

face image I lH (i.e. the residual term P (I lH |I
g
H)). By

combining I gH and I lH , the target high-resolution im-

age can be obtained. Related works include (Fan and
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Yeung, 2007; Hsu et al, 2009; Jia and Gong, 2006, 2008;

Kumar and Aravind, 2008b; Liang et al, 2010; Liu et al,

2005b,c,d, 2007b; Tanveer and Iqbal, 2010; Wang et al,

2011; Zhang et al, 2008, 2011a; Zhuang et al, 2007).

The aforementioned methods construct the same

pairwise edge-based compatibility functions for all patches

on a face image. In contrast to this, Stephenson and

Chen (2006) proposed a method that structured sev-

eral different pairwise compatibility functions, in which

patches lying on the same region or the same group

shared the same compatibility function. This method

improves the probability of incorporating more relevant

information between a query image patch and the se-

lected nearest neighbors. Subsequently, similar approx-

imation procedures (Freeman et al, 2000) are applied

to the estimation of the target high-resolution image.

Considering the strong structural property of face

images, the uniform scale of MRF has limited abil-

ity to address the long range dependency among local

patches; thus, Wang and Tang proposed a multi-scale

MRF model for FSPS (Wang and Tang, 2009). Their

method constructs the pairwise compatibility functions

through the nearest neighbors searched from a train-

ing set across different scales. Under the MAP rule,

the best matched neighbor patch is then taken as the

target patch corresponding to the input image patch.

This method uses the image quilting (Efros and Free-

man, 2001) technique to stitch the overlapping areas,

which reduces both the blurring effect due to the strat-

egy of averaging the overlapping areas and the block-

ing artifacts because of the incompatible nearest neigh-

bor patches. The authors also performed subspace face

recognition (Wang and Tang, 2006) by using synthe-

sized sketches and photos. They extended this work to

lighting and pose robust FSPS (Zhang et al, 2010) by

taking photo-to-photo patch matching, photo-to-sketch

patch matching, shape priors, intensity compatibility,

and gradient compatibility into account. The experi-

mental results show that their proposed method achieved

a better visual effect than the results reported in (Wang

and Tang, 2009).

Zhou et al (2012) claimed that above MRF-based

sketch-photo synthesis method (Wang and Tang, 2009)

had two major drawbacks: cannot synthesize new sketch

patches (i.e. each patch of final target output is from the

training set) and NP-hard for the optimization prob-

lem in solving the MRF model. Then they proposed

a weighted Markov random fields method (Zhou et al,

2012) to model the relation between sketch and photo

patches. By a linear combination of selected K candi-

date sketch patches, their method could synthesize new

sketch patches existing not in the training sketch set.

Furthermore, the objective function is a convex opti-

mization problem which has the unique optimal solu-

tion. Experimental results illustrated they indeed im-

proved some deformation yet not as clear as that gen-

erated by (Wang and Tang, 2009).

Aforementioned methods are based on inductive learn-

ing which may result in high loss for test samples. This

is because inductive learning minimizes the empirical

loss for training examples. Wang et al (2013b) proposed

a transductive face sketch-photo synthesis method that

took the given test samples into the learning process to

minimize the loss on these test samples. The generative

process of both photos and sketches could be modeled

by Bayesian inference. The relation between sketch and

photo patches are modeled by a graphical model simi-

larly as weighted Markov random fields method (Zhou

et al, 2012). Experimental results illustrate this method

achieves state-of-the-art performance both from subjec-

tive (synthesized examples) and objective (face recog-

nition accuracy) manner.

2.3 Embedded Hidden Markov Model

Hidden Markov models (HMM) track the time-varying

stochastic process through probability statistics, and

have been widely applied to acoustic speech signal pro-

cessing (Rabiner, 1989). Samaria (1994) first constructed

a one-dimensional HMM on a face partitioned into five

regions (hair, forehead, eye, nose, and mouth), each re-

gion corresponding to a hidden state. The intensities of

each region are taken as the observation. Three basic

problems in HMM-based methods illustrate the back-

bone of this class of methods: (1) how can one efficiently

compute the probability P (O |λλλ) of the observation se-

quence O = (o1, · · · ,oT ) (T denotes the number of

observations) given the HMM model λλλ (model parame-

ters); (2) how does one choose a corresponding state se-

quence Q = (q1, · · · , qT ) that is optimal in some mean-

ingful sense (e.g. maxI g
H ,I

l
H

); and (3) how can the model

λλλ be adjusted to maximize the probability in prob-

lem (1) P (O |λλλ). These three problems can be solved

with the help of the backward-forward algorithm, the

Viterbi decoding algorithm, and the Baum-Welch algo-

rithm, respectively. A detailed discussion and analysis

of these three problems and HMM can be found in Ra-

biner (1989). Owing to the fact that a face image con-

tains two-dimensional spatial information, conventional

HMM is challenged by two problems: the loss of some

spatial information and high computation cost. Later,

the use of embedded hidden Markov models (E-HMM)

(Nefian and Hayes, 1999) was proposed to model the

face image at a moderate computation cost. Gao et al.

(2008b; 2008c; 2009; 2010; 2007) employed E-HMM to
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Fig. 5 E-HMM structure and parameters for face image.

learn the nonlinear relationship between sketches and

their counterpart photo images.

Before discussing these methods, the construction

of the E-HMM for a holistic face image should be in-

troduced. In this model, E-HMM consists of Ns = 5

super-states (corresponding to 5 different sections: fore-

head, eye, nose, mouth, and chin) that model the face

information in the vertical direction. Each super-state

can be decomposed into embedded-states that describe

the face information from the horizontal direction. Each

super-state and its embedded-states can be regarded as

a one dimensional HMM, where each observation (each

pixel has an observation (vector)) in an image corre-

sponding to one hidden state, i.e., embedded state. The

following parameters support the E-HMM model: ini-

tial super-state distribution Πs, super-state probabil-

ity transition matrix As, initial embedded state dis-

tribution Π
(k)
s , and embedded-state probability transi-

tion matrix A(k)
e . In addition, the distribution b

(k)
i (ot)

of each observation ot (t indexes the pixel) under the

hidden embedded-state ski (super-state and embedded-

state are indexed by k and i respectively) is represented

by a Gaussian mixture density function parameterized

by mixture weights, mean vector, and covariance. The

observation vector of each pixel is the concatenation of

five vectors extracted from the image by five operators:

grayscale value-extracting operator, Gaussian operator,

Laplace operator, horizontal and vertical derivative op-

erator (see Fig. 5).

Gao et al. (2008b; 2007) generated sketches from an

input test photo by using E-HMM. Fig. 6 shows the gen-

eration of the sketch-photo pairs from groups of hidden

variables. In comparison to the model defined by (1),

this method does not model the likelihood P (I in|I out)
and the prior P (I out) directly. Instead, the hidden vari-

ables z = {z1, · · · , zN} are taken into account

I ∗out = argmax
I out,z

P (I out, z |I in)

= argmax
I out,z

P (I out, z , I in)

= argmax
I out,z

P (I in, z )P (I out|I in, z )

= argmax
I out,z

P (I in, z )P (I out|z ).

(11)

To obtain I ∗out, a coupled E-HMM model λλλ is jointly

trained to maximize the likelihhood P (O |λλλ) by using

the Baum-Welch algorithm under the assumption that

a sketch and the counterpart photo share the same

supper-state and embedded-state transition probability

matrix. Here the observation sequence O is the concate-

nation of features extracted from one sketch-photo pair

(I P , I S) by the aforementioned five operators. After-

ward, two sub-E-HMM models λλλP and λλλS are obtained

by uncoupling the E-HMM model as λλλ = [λλλP ;λλλS ].

In the synthesis stage, K E-HMM models are selected

with respect to the similarity between the source input

photo and the trianing photos. The similarity is mea-

sured by P (O in|λλλP ) calculated by the forward-back-

ward algorithm, where O in denotes the observation se-

quence extracted from the input photo I in and λλλP is

the E-HMM model of a training photo image. With re-

gard to each selected λλλPi
(i = 1, · · · ,K), the probability

P (I in, z ) under this model can be further represented

as P (O in, z |λλλPi). Gao et al (2008b) solved the above
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Fig. 6 Graphical illustration of the model in (Gao et al,
2008b; Zhong et al, 2007). Here x1, · · · , xT and y1, · · · , yT

denote the observations extracted from a sketch-photo pair
respectively, i.e. oi = [x i; yi], i = 1, · · · , T . z1, · · · , zN are
hidden variables.

Eq. (11) in three steps. First, the optimal state sequence

z is decoded from the observation sequence O in by λλλPi

exploiting the Viterbi algorithm

z ∗ = argmax
z

P (O in, z |λλλPi). (12)

Then, the observation sequence Oout corresponding to

the target sketch is then reconstructed according to the

computed optimal state sequence z ∗ under the E-HMM

λλλSi

O∗out = argmax
Oout

P (Oout|z ∗,λλλSi) (13)

The above optimization problem can be resolved by as-

signing the mode of a special Gaussian component of

the Gaussian mixture model, where the index of the

special component is determined by the corresponding

state value in the optimal state sequence z ∗. Subse-

quently a sketch can be rearranged from grayscale val-

ues extracted from the observation sequence O∗out. Fi-

nally, the target sketch is synthesized by a linear com-

bination of these K sketches weighted by the sum-nor-

malized similarity measure P (O in|λλλP ).

Since the method in (Gao et al, 2008b; Zhong et al,

2007) was conducted on a holistic face image, certain

fine local features such as those associated with eyes,

nose, and mouth, could not be learned. Furthermore,

some noise exists in the synthesized sketches. To over-

come these defects, Gao et al (2008c) extended the

aforementioned method to local patch-based sketch syn-

thesis in a subsequent work. Here, all the images were

divided into even patches with some overlap. For each

patch in the source input image, the corresponding tar-

get image patch is synthesized using the approach intro-

duced above (Gao et al, 2008b; Zhong et al, 2007). The

approach in (Xiao et al, 2009) extended the algorithm

(Gao et al, 2008c) to face photo synthesis, employing a

similar idea to Gao et al (2008c). Several of the above E-

HMM-based methods average the overlapping regions

which may result in blurring effect. In consideration of

this, the image quilting technique (Efros and Freeman,

2001) was exploited to stitch the neighbor patches both

for sketch synthesis and photo synthesis in Xiao et al

(2010).

2.4 Discussion

Gradient-based prior for data modeling-based methods

find only neighbors related to pixels in the same loca-

tion, which may result in low compatibility between

neighboring patches and sensitive to small misalign-

ment of face images. MRF-based methods compensate

for this shortcoming by defining two compatibility func-

tions between the low-resolution patch (or sketch/photo

patch) and the corresponding high-resolution patch (

photo/sketch patch), and among high-resolution neigh-

boring patches (photo/sketch patches), respectively. How-

ever, MRF-based methods always adopt the MAP cri-

terion to select the most appropriate neighboring patch

to hallucinate the target patch. This requires that there

are sufficient examples in the training dataset to con-

tain every possible patch state; otherwise the MAP

strategy may lead to deformation as a result of its

neighbor selection limitation. E-HMM-based methods

enforce compatibility between neighboring states by a

transition probability matrix from one state to other

neighboring states. From the analyses carried out in

subsections 2.1 to 2.3, we found that all three sub-

category methods share the same drawbacks of high

computation cost and heavy memory load. Gradient-

based prior for data modeling-based methods are sub-

ject to this defect because of pixel-based feature extrac-

tion and computation. MRF-based methods may avoid

this curse by adopting the neighbor search strategy in

(Wang and Tang, 2009). E-HMM-based methods toler-

ate this shortcoming as a result of both the pixel-based

feature extraction strategy and iterative Viterbi decod-

ing estimation.

3 The Subspace Learning Framework

Subspace learning refers to the technique of finding a

subspace <m embedded in a high dimensional space

<n(n > m). Linear subspace learning (e.g. principal

component analysis, locality preserving projection (He,

2005)) is mainly achieved by a projection matrix U ∈
<n×m, which is learned from training examples. The

matrix U can always be calculated by solving a stan-

dard eigenvalue decomposition problem (Zhang et al,
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Fig. 7 Diagram of the subspace learning framework.

2009) or generalized eigenvalue decomposition problem

(He, 2005),

Au i = λiBu i (14)

where A and where B denote various meanings for dif-

ferent subspace learning methods, u i is the eigenvec-

tor corresponding to eigenvalue λi, and U is composed

of columns of u i. Given an input image or image fea-

ture f ∈ <n, we can find its projection on subspace

<m from f proc = U T f . In addition to above vector-

and matrix-based subspace learning, it could be simi-

larly extended to multilinear analysis, i.e. tensor anal-

ysis (Tao et al, 2007a,b). Nonlinear subspace learning

mainly refers to nonlinear manifold learning (e.g. locally

linear embedding (Roweis and Saul, 2000)). The con-

cept of constructing a local neighborhood has been ex-

plored since the methods of such a sub-category have no

explicit mapping function. When the subspace-learning

framework is applied to FH, most methods assume that

both sides of the face hallucination share the same lin-

ear combination of weights. An illustration of the sub-

space-learning framework is shown in Fig. 7; for an the

holistic method such as eigentransformation, the par-

tition mask denotes the identity map which preserves

the whole face image and K equals to the number of

training image pairs. The patch should be substituted

by the holistic face image.

3.1 Linear Subspace Learning-based Approaches

Tang and Wang (2002; 2003; 2004; 2003; 2005) pro-

posed an eigentransform method for face sketch synthe-

sis and FSR by exploiting principal component analysis

(PCA). This method assumes that the sketch and cor-

responding photo share the same linear combination

coefficients (Tang and Wang, 2002, 2004). The input

photo pr is first projected on the photo training set P
to obtain the linear combination coefficients cp

pr = Pcp =

M∑
i=1

cpiP i. (15)

The target sketch sr is then synthesized by linearly

combining sketches S in the training set with afore-

mentioned coefficients cp

sr = Scp =

M∑
i=1

cpiS i. (16)

In Tang and Wang (2003), the shape was first separated

from the texture and then eigentransform was applied
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to shape and texture. Finally, the shape and texture are

fused to obtain the sketch corresponding to the input

photo. The idea of eigentransform was then applied to

FSR (Wang and Tang, 2003, 2005).

Considering the fact that less information is pro-

vided in the sketch than in an original face image, which

may affect face recognition performance, Li et al (2006)

proposed an algorithm for synthesizing a photo from

its sketch counterpart. In the proposed algorithm, they

performed eigen-analysis (Turk and Pentland, 1991) on

a hybrid space consisting of training sketches and train-

ing photos instead of on the photo space, as in the

methods discussed previously. By separating the hy-

brid projection matrix obtained from the eigen-analysis

into two coupled matrixes-an eigenphoto matrix and

an eigensketch matrix, the projective coefficients are

obtained by projecting the query sketch on the sketch

space spanned by the columns of the eigensketch ma-

trix. Finally, the pseudo-photo is synthesized from the

linear combination of eigenphotos weighted by the ob-

tained coefficients.

Park and Lee proposed a method for FSR (Park

and Lee, 2003) that was similar to Tang and Wang’s

work (Tang and Wang, 2003). The method is based

on a face morphable model under the framework of

top-down learning (Hwang and Lee, 2003; Jones et al,

1997). The shape and texture information are first sep-

arated using backward warping and then decomposed

into a linear combination of shapes and textures col-

lected from the low-resolution training images. The re-

construction weight is found by solving a least square

problem, after which the high-resolution image could

be hallucinated by combining the estimated high-reso-

lution shape with the estimated high-resolution texture

using forward warping. They extended this idea further

to a two-step method by incorporating a recursive error

back-projection procedure (Park and Lee, 2008).

In contrast to the method in (Park and Lee, 2008),

which utilized the prototype faces trained from the raw

training images rather than from the residual images

themselves, Hsu et al (2009) presented a two-step method.

In the method, both high and low-resolution training

images are divided into subsets and then, for each in-

put low-resolution image, the closest training subset is

selected by finding the index of the nearest cluster un-

der Euclidian distance metric.

Different from the aforementioned PCA-based meth-

ods all performed on a whole face image, which may

result in some blurring effect and the loss of some crit-

ical fine detail information, Liu et al (2005c) proposed

a patch-based method that utilizes multilinear analysis

techniques and a coupled residue compensation strat-

egy. An initial estimate is obtained via tensorpatch su-

per-resolution. By performing PCA on both low and

high-resolution training images, the final high-resolu-

tion image is reached by settling a least square problem.

The experimental results indicates that the high-resolu-

tion face image generated by their proposed method re-

sulted in improvements, especially for some detail parts,

compared to other global methods.

In addition to PCA, locality preserving projection

(LPP) (He, 2005) is explored to compute the projection

weights. Zhuang et al (2007) proposed a two step FSR

method: locality preserving hallucination for the initial

estimate and neighbor reconstruction for residue com-

pensation. LPP is first utilized to extract the embed-

ding features from training images and the low-resolu-

tion input image. Next, the radial basis function (RBF)

regression model is learned from the training image fea-

tures obtained and the training image intensities, char-

acterized by the regression coefficients. The whole im-

age is then output from the RBF regression model af-

ter inputting the feature of the source input image. At

the residual compensation stage, neighbor embedding

(Chang and Xiong, 2004) is explored to hallucinate the

high frequency information. Finally, the high-resolution

image is fused by adding the estimated holistic face im-

age and the high frequency information. Zhang et al

(2008) proposed an adaptive learning method based on

LPP. Given an input low-resolution photo, they first in-

terpolated it to obtain its high-resolution counterpart

and then filtered it using a low-pass filter to gener-

ate the low frequency face image. A similar process is

also applied to the low-resolution training images. The

LPP procedure is used on the low-resolution training

images to obtain the basis and the mapped data ma-

trixes. Residual faces are then obtained from the high-
resolution faces by removing the corresponding low fre-

quency parts. By projecting the input low frequency

image patch on the basis matrix, the low dimensional

feature is obtained. Similar features are selected and

utilized in the obtained mapped data matrix under the

metric of Euclidean distance, and the high frequency

residual image is hallucinated using an eigentransfor-

mation-like method from the training residual images

whose indexes are determined in the feature selection

step. The final high-resolution image is synthesized by

adding the low frequency face image to the residual im-

age.

3.2 Nonlinear Manifold Learning-based Approaches

Inspired by locally linear embedding (LLE) (Roweis

and Saul, 2000), Chang and Xiong (2004) proposed a

super-resolution algorithm. This method assumes that
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the low-resolution face images and their correspond-

ing high-resolution counterparts are sampled from two

manifolds share a similar geometrical structure. The

proposed method works at patch-level and all referred

images are divided into patches at the outset. Given an

input low-resolution image patch y , K nearest neigh-

bors y i(i = 1, · · · ,K) are first found in the patches

extracted from low-resolution training images. The re-

construction weight vector w is calculated by solving a

least squares problem

min
w
‖ y −

K∑
i=1

wiy
i ‖

2

, s.t.

K∑
i=1

wi = 1. (17)

By linearly combining high frequency information x i of

the K high-resolution image patches corresponding to

the selected K low-resolution candidates,
∑K
i=1 wix

i,

the target high-resolution image patch is generated by

adding the corresponding low frequency information

transferred from the low-resolution input image. All the

obtained image patches are put together to obtain the

final target.

Aware that global FH methods might lose critical

fine detail information, the local neighborhood construc-

tion idea of LLE was subsequently explored in FH meth-

ods. Liu et al (2005a) applied a similar idea to that

in (Chang and Xiong, 2004) to face sketch synthesis,

taking the image intensities as the input and the out-

put directly rather than the high frequency feature.

Their experimental results showed that this nonlinear

method achieved improvements over the global linear

method like (Tang and Wang, 2002, 2003, 2004). Liu

et al (2005d) utilized the neighbor embedding method
to generate an initial high-resolution image from its

low-resolution counterpart and then explored general-

ized singular value decomposition to hallucinate the

high frequency information to compensate the resid-

ual for the initial estimate. They applied singular value

decomposition to obtain two projection matrixes and

then, given an input low-resolution image patch, syn-

thesized the initial estimate by addressing a least square

problem, thereby exploring their previous work (Liu

et al, 2005b). The residual image is generated using

a similar procedure. (Fan and Yeung, 2007) proposed

a two-step image hallucination method using neighbor

embedding over visual primitive features. In the first

stage, neighbor embedding is also used to obtain an

initial estimate. In the second stage, the residual er-

ror is compensated for by averaging the residual error

of K nearest neighbors that are stored in the training

phase. Chen et al (2009) applied neighbor embedding

to visible image-near infrared image synthesis with LBP

features as the input. Through their face recognition ex-

perimental results, great improvements were made for

illumination variation cases.

Though patch-based methods improved the detail, a

global search strategy among all training image patches

is time-consuming. Ma et al. (2009; 2010a; 2010b) pro-

posed a position-based FH method that borrowed the

idea of neighbor embedding. After dividing all images

into patches, the high-resolution counterpart of a given

input low-resolution image patch is estimated by apply-

ing neighbor embedding to those training image patches

located in the same position as the test patch. The

authors also applied the position-based FH method to

multi-view FH in which a multi-view face synthesis pro-

cedure was conducted before hallucination by utilizing

a method similar to neighbor embedding (Ma et al,

2010a). They further investigated whether residue com-

pensation was a necessary step for FH and declared that

it was not indispensable if the FH algorithm did not in-

corporate dimension reduction methods such as PCA,

or LPP which incur the loss of non-feature information

(Ma et al, 2010b). Liang et al (2010) also utilized a

method similar to neighbor embedding to compensate

for the initial high-resolution estimate obtained from

an image decomposition perspective.

To further improve the quality of local detail, pixel-

structure is explored to refine the local characteristics.

Also inspired by LLE, Hu et al (2010, 2011) proposed

a method from local pixel structure to global image

FSR. This method assumes that two face images be-

longing to the same person should have similar local

pixel structures and that each pixel could be generated

by a linear combination of its neighborhoods weighted

by coefficients. They conducted their method in three

steps as follows: (1) K example faces are searched from

the low-resolution image training set containing images

that are most similar to the input and K corresponding

high-resolution example images are warped to the input

face using optical flow (Brox et al, 2004); (2) the local

pixel structures for the target high-resolution face im-

age are learned from the warped high-resolution exam-

ple faces; and (3) the target high-resolution face image

is estimated by addressing a constrained least square

problem by means of an iterative procedure. When the

peak signal to noise ratio (PSNR) and structured sim-

ilarity index metric (SSIM) (Wang and Bovik, 2004)

values were compared to other methods, the proposed

method was found to be superior.

Li et al (2009) claimed that the assumption adopted

by many learning-based super-resolution methods that

the low-resolution representation manifold and the cor-

responding high-resolution representation manifold share

similar local geometry might not hold due to the non-

isometric one-to-multiple mappings from low-resolution
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image patches to high-resolution image patches. They

proposed a manifold alignment method for FH that pro-

jected the two manifolds to a common hidden manifold.

An input low-resolution image is first projected onto the

common manifold and the FH task is then conducted

among the common manifold and the high-resolution

manifold by way of the neighbor embedding.

3.3 Discussion

PCA-based FH methods preserve the holistic property

but ignore the neighboring relations for encoding some

local facial features. Manifold learning-based FH meth-

ods make up for this imperfection by enforcing certain

constraints: for example, LLE assumes that each patch

of a face can be reconstructed by a linear combination

of its nearest neighbors and this relation is preserved for

both low-resolution image (photo) and high-resolution

image (sketch); LPP is a linear approximation of a

Laplacian eigenmap (Belkin and Niyogi, 2001), which

preserves the local geometry by constructing a graph

of neighboring nodes connected by edges. Then LPP-

based FH methods also take local facial features into

account when they are applied to model the halluci-

nation process. Though the local neighboring relations

of manifold learning-based methods may be well pre-

served, the global shape information of a face might be

not easily modeled by these methods.

4 Combination of Bayesian Inference and

Subspace Learning Framework

Some works have explored both Bayesian inference (Sec-

tion 2) and subspace learning methods (Section 3). Meth-

ods in this category have mostly applied subspace anal-

ysis (Fig. 6) to the prior model (Fig. 3) or explored sub-

space learning methods to generate an initial estimate,

in which case the two step framework (Liu et al, 2001,

2007a) is adopted.

Although the method (Liu et al, 2001, 2007a) is in-

troduced in Section 2.2 (under the Bayesian inference

framework) for the convenience of introduction, indeed,

it can be deemed as a representative approach in the

contexts of Bayesian inference and subspace learning. In

this approach (Liu et al, 2001, 2007a), principal compo-

nent analysis is first applied to obtain an initial global

face image and subsequently an MAP-MRF is exploited

to calculate the local face image.

Liu et al (2007b) applied a two-step procedure to

photo synthesis from an input sketch. In the first step, a

method similar to (Liu et al, 2005a) (LLE-based) is used

to generate an initial estimate. Then, by exploiting the

proposed tensor model whose modes consisted of people

identity, patch position, patch style (sketch or photo)

and patch features, the high frequency residual error

is inferred under the Bayesian MAP framework on the

assumption that a sketch-photo patch pair shares the

same tensor representation parameter. By adding these

two parts, a photo with much more detailed information

could be synthesized from the input sketch.

Zhang and Cham (2008, 2011) proposed a FSR ap-

proach in the DCT domain under the MAP framework.

In this method, the high frequency DCT coefficients are

abandoned due to their weak energy. The DC coefficient

is calculated by an interpolation-based method, while

the AC coefficients are estimated by their correspond-

ing K nearest neighbors exploring the idea of LLE un-

der a simplified MRF model that assumes there were

no dependency relations between neighboring AC coef-

ficients. Prefiltering procedures are executed along the

boundaries block-wise locally before performing DCT

and postfiltering procedures are carried out after ap-

plying IDCT.

Unlike many LLE-based methods that assumed the

low-resolution patch and high-resolution patch had the

same reconstruction weights or coefficients, Park and

Savvides (2007) proposed a LPP-based FSR, which in-

ferred the LPP projection coefficients of each high-reso-

lution patch via Bayesian MAP criterion from an input

low-resolution image patch. Together with the LPP pro-

jection matrix learned from the training of high-resolu-

tion image patches, the high-resolution image patch can

be synthesized from their linear combination; hence,

a final high-resolution image can be fused from the

patches obtained.

Following Park and Savvides’s procedure for projec-

tion coefficients (Park and Savvides, 2007), several sim-

ilar methods are proposed. Kumar and Aravind (2008b)

proposed a two-step method using orthogonal locality

preserving projections (OLPP) (Cai et al, 2006) and

kernel ridge regression (KRR). OLPP is utilized to es-

timate the coefficients of each high-resolution image

patch, as in (Park and Savvides, 2007), while KRR is

used to estimate the high frequency needed to compen-

sate for the residual error. Kumar and Aravind (2008a)

also proposed a similar idea that combined 2D-PCA

(Zhang and Zhou, 2005) and KRR to hallucinate in-

put low-resolution images, in which 2D-PCA was ex-

plored to estimate the 2D-PCA projection features (co-

efficients) of the high-resolution image and KRR was

applied to estimate the residue. Subsequently, Cai et al

(2006) substituted OLPP into the direct locality pre-

serving projections (DLPP) method (Ahmed et al, 2008)

to estimate the projection coefficients while using KRR

to compensate for the residual image.
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Several works investigate the learning procedure ap-

plied in multi-frame or video sequence FSR. Capel and

Zisserman (2001) proposed a FSR method that could

work either by constraining the solution to a restricted

subspace or by defining a prior via subspace analysis

where both subspaces were spanned by PCA compo-

nents. An image is divided into four regions: the eyes

(a pair), nose, mouth, and cheek (two sides) areas and

some PCA components are trained separately from the

corresponding training image regions. A maximum like-

lihood (ML) estimator is obtained by restricting the so-

lution lying on the PCA subspace and a MAP estimator

is produced by extending this ML estimator through

adding a prior defined on the coefficients of the princi-

pal components. Another MAP estimator is formed by

encouraging the estimated image to lie near to the PCA

subspace as a prior. Similar work was also carried out

by Chakrabarti et al (2007) who proposed a multi-frame

face image super-resolution method via kernel PCA and

took the prior in the form of a Gibbs function. The

energy function reflects the energy of the high-resolu-

tion image outside the principal subspace that could be

written in a least square distance of high-resolution im-

age from its projection on the principal subspace. The

high-resolution image is computed using the gradient-

descent approach by solving a constrained least squares

problem.

Considering the fact that one application of face

image super-resolution is face recognition and that di-

mensionality reduction is frequently used in state-of-

the-art face recognition systems, Gunturk et al (2003)

proposed an eigenface-domain super-resolution method

especially for face recognition using a sequence of im-

ages extracted from surveillance videos. FSR is usu-

ally seen as a preprocessing procedure for generic FSR-

based recognition systems; however, in their proposed

method, they first extracted feature vectors from se-

quential low-resolution images by PCA and then es-

timated the feature vector of the corresponding high-

resolution image by exploring eigenface analysis under

the MAP framework. The feature vector could then be

used both for face recognition and high-resolution im-

age reconstruction. After multiplying the feature vec-

tors by the PCA projection matrix calculated from the

high-resolution training images, the super resolved face

image is obtained. This method has the advantage of a

reduction in computational complexity but suffers from

poor visual quality.

Most of the above methods are dedicated to frontal

FSR or frontal FSPS, although some insight into the

pose and view variation issue has been provided. Li and

Lin (2004) proposed a FSR method with pose variation

in which they first utilized a SVM classifier to estimate

the pose label of the input low-resolution face image.

The frontal low-resolution face image is then estimated

by solving a least square problem based on the corre-

sponding training images with the same pose label. Us-

ing the estimated frontal face image, they applied the

hallucination method in (Gunturk et al, 2003) to hal-

lucinate the high-resolution image. Following a similar

idea to Gunturk et al.’s method (Gunturk et al, 2003),

Jia and Gong (2005) proposed a multi-view, multi-il-

lumination tensor face-based FSR approach. The ten-

sor is composed of four modes: identities, views, illu-

minations, and pixels. This method derives a model

for the reconstruction of identity parameter vectors in

the high-resolution tensor space from the correspond-

ing identity parameter vectors of low-resolution space.

By substituting the principal component analysis in

(Gunturk et al, 2003) with tensor analysis under the

maximum likelihood estimation framework, the iden-

tity parameter is calculated and both face recognition

and FSR are carried out. The tensor model was subse-

quently extended to the multi-resolution patch tensor

for face expression hallucination under the MAP frame-

work (Jia and Gong, 2006, 2008). This method could

hallucinate several high-resolution images with different

expressions given a low-resolution image. The tensor

consists of modes of identities, expressions, resolutions,

patches (patch location), and pixels. An image is de-

composed into two parts: the low and middle frequency

information part, and the high frequency information

part, which results in the MAP objective function be-

ing solved by a two-step sequential solution. In the first

step, the low and middle frequency information is eval-

uated by solving a least square problem. The high fre-

quency information is then compensated by exploiting

a nonparametric patch learning process in the second

step. Combining these two parts, the target high-reso-

lution image with some expression is computed.

5 The Sparse Representation-based Approaches

Sparse representation accounts for a decomposition that

represents a signal ysig ∈ <n into a linear combination

of basis signals D i ∈ <n(i = 1, · · · , k), which are of-

ten called atoms, weighted by few nonzero coefficients.

Given that D = [D1, · · · ,Dk] denotes an over-com-

plete dictionary (k > n), the sparse representation of

the signal ysig is represented as follows:

argmin
xcoe

‖ysig −Dx coe‖2 + λ‖x coe‖0 (18)

However, solving this ”L0-norm” (which is actually not

a norm since it does not satisfy the three necessary con-

ditions of the definition of norm) regularized problem



A Comprehensive Survey to Face Hallucination 15

is NP-hard and is computationally prohibitive. Never-

theless, Donoho (2006) recently proved that the min-

imal L1-norm solution approximates the sparsest so-

lution under mild conditions. Thus, the optimization

problem in Eq. (18) is reformulated:

argmin
xcoe

‖ysig −Dx coe‖2 + λ‖x coe‖1 (19)

which is known in statistical literature as the Lasso, es-

sentially a linear regression regularized with L1-norm

on the coefficients (Tibshirani, 1996). In some applica-

tions, such as image denoising (Elad and Aharon, 2006)

and image restoration (Mairal et al, 2008), the dictio-

nary is always learned from training examples by al-

ternatively optimizing D and x coe respectively, while

in applications such as face recognition (Wright et al,

2009), D is predefined as a set of either patches or fea-

tures extracted from images.

Yang et al (2008a) proposed a two-step method for

FSR based on sparse coding. In the first step, non-nega-

tive matrix factorization (Lee and Seung, 1999) is used

to obtain a non-negative basis matrix B which spans

a face subspace. An MAP problem is defined to recon-

struct an initial estimiation to the target high-resolu-

tion image

max
IH

P (IL|IH)P (IH)⇔

c∗ = argmin
c
‖MBc − IL ‖22 + λ‖ ΓBc ‖2, s.t.c � 0,

(20)

where M is a blurring and dow-sampling matrix, c is

the non-negative reconstruction coefficient vector, λ is

a trade-off factor between the reconstruction term and

the prior term, and Γ is a high-pass filtering matrix.

Finally the initial high-resolution image is generated

by Bc∗. Since the regularization in Eq. (20) requires

the result to be smooth, some critical high-frequency

information can be filtered.

In the second step of this method, sparse repre-

sentation on both low-resolution image patches (fea-

tures) and high-resolution image patches (features) is

applied to obtain the residual image to compensate the

missing detailed information. Before performing sparse

representation, two dictionaries DL and DH are con-

structed from some patch pairs randomly sampled from

the training images (both low-resolution and hihg-reso-

lution images). The target high-frequency information

is computed by Dhααα, where the coefficient vector ααα is

given by

min
ααα
‖ ααα ‖1 +

η

2
‖ D̃ααα− ỹ ‖

2

2 (21)

where D̃ =

[
FDL

βEDH

]
and ỹ =

[
Fy

βωωω

]
. The parame-

ter η controls the tradeoff between the sparsity of the

coefficient and the fidelity of the data term and β bal-

ances the low-resolution reconstruction and the com-

patibility among neighboring patches. F extracts the

gradients of patches. E extracts the overlapped region

between the current target patch and the neighboring

reconstructed patch. ωωω consists of the intensities of a

neighboring patch on the overlapped region. y is the in-

put low-resolution image patch. Finally the target out-

put high-resolution image is obtained by superimposing

Dhααα on Bc∗.

A similar sparse representation model is borrowed

in several other works. In (Chang et al, 2010), Yang’s

model (2008a) was applied to face sketch-photo syn-

thesis by substituting the low- and high-resolution im-

ages with sketches and photos. Considering that dif-

ferent areas of the face might have their own charac-

teristics, Wang et al (2011) proposed a multi-dictio-

nary based sparse representation framework in which

a sub-dictionary was learned from a cluster of train-

ing image patches. A simple version of this model was

also borrowed to perform FSR and FSPS with the dic-

tionary predefined as a collection of image patches (Ji

et al, 2011; Jung et al, 2011). Now that the number

of nearest neighbors is fixed in most existing methods,

which might introduce some deformation and noise into

the result, Gao and Wang et al (2012; 2013a) utilized

sparse representation to conduct feature selection for

FSPS and heterogeneous image transformation respec-

tively. The principal motivation is to adaptively select

closely related features whose sparse representation co-

efficient is larger than a threshold value. By substituting

the L0-norm or L1-norm regularized prior term in Eq.

(18) or (19) with another regression regularized prior

such as ridge regression prior (Komarek, 2004) and rel-

evance vector machine prior (Tipping, 1991) (which be-

longs to the sparse Bayesian approaches), Chang et al

(2011) proposed a multivariate output regression-based

face sketch-photo synthesis method. Zhang et al (2011a)

proposed a support vector regression-based two-step

method for a face sketch-photo synthesis method.

Different from above methods all assumed that the

source input and the target output had the same sparse

representations, Wang et al (2012) relaxed this assump-

tion supposing they had their respective sparse repre-

sentations. These two sparse representations are con-

nected through a linear transformation. Then the objec-

tive function is composed of two sparse representation

parts, one fidelity term between the sparse representa-

tion coefficients, and the regularization term on the lin-

ear transformation matrix, under some scale constraints
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to each atom of dictionaries. They separated the ob-

jective function into 3 sub-problems: sparse coding for

training samples, dictionary updating and linear trans-

formation matrix updating.Experimental results seem

to be over-smoothed.

6 Performance Evaluations

The evaluation for FH can be subjective quality assess-

ment or objective quality assessment. Subjective qual-

ity assessment can be applied by visual perception or

mean opinion score (MOS), which has been used in

ITU-T p.910, a standard in multimedia services. Vi-

sual perception is predicated on the observers’ percep-

tion without a numerical quantification. MOS is de-

fined as the average of the quality values ranging from

1 to 5 that are obtained from observers. Although the

subjective image quality assessment is the most direct

and most accurate metric to reflect a person’s percep-

tion, it is always subject to the defects of costs and

expensive manpower. As a result, objective quality as-

sessment metrics that operate in an automatic man-

ner have been proposed. These include classical PSNR,

mean square error (MSE) or root mean square error

(RMSE), cross-correlation, the recently proposed SSIM

(Wang and Bovik, 2004), and the universal image qual-

ity index (UIQI) (Wang and Bovik, 2002) (a special case

of SSIM) method for generic image quality assessment.

To some extent, face recognition rate can also be seen as

an objective image quality assessment metric because

it measures the similarity of the query image to images

in the gallery. Table 2 summarizes and compares the

evaluation metrics of a number of representative meth-

ods.

Although FSR is important for improving the per-

formance of face recognition, there are limited results to

explain how FSR quantitatively affecting the face recog-

nition performance. Gunturk et al (2003) performed

eigenface (Turk and Pentland, 1991) recognition ex-

periments on some real video sequences containing 68

people, collected from the CMU PIE database (Sim

et al, 2002). They achieved an accuracy of 44% by

utilizing low-resolution images in comparison to 74%

by exploring their hallucinated high-resolution face im-

ages. Park and Lee (2008) performed eigenface (Turk

and Pentland, 1991) recognition experiments on three

databases: MPI (Vetter and Troje, 1997), XM2VTS

(Messer et al, 1999), and KF (Roh and Lee, 2007). Their

results show that recognition performance can be sig-

nificantly improved by utilizing their hallucinated high-

resolution face images compared with exploiting the

interpolated high-resolution images. Wang and Tang

(2005) conducted direct correlation-based face recogni-

tion on 490 face images of 295 subjects in the XM2VTS

database (each subject has two images from two differ-

ent sessions). They found that the recognition accura-

cies fluctuate slightly when the down-sample factor is

not too large (not larger than 5 in the paper). When

the down-sample factor is reduced further, the hallu-

cinated high-resolution face images improve the face

recognition performance compared to directly utilizing

the low-resolution images. They also pointed out that

the improvement on face recognition accuracy is not as

significant as that in the visual quality. Further studies

in psychology and human visual system are valuable to

examine how FSR help improve face recognition and

verification performance.

Most existing FSPS methods perform synthesis and

recognition experiments on the public database: CUFS

(Wang and Tang, 2009). This database contains 606

face sketch-photo pairs consisting of three sub-databases:

CUHK Student (188 pairs), Purdue AR (123 pairs),

XM2VTS (295 pairs). Face photos of this database are

generally in neutral expression, normal lighting, and

frontal view. In experiments, 306 pairs are usually uti-

lized for model training and the remaining 300 pairs

are for model test. Tang and Wang (2003) reported

an accuracy of 81.3% by exploring a Bayesian classifier

(Moghaddam et al, 2000) in comparison to 25% by ap-

plying eigenface (Turk and Pentland, 1991) method on

sketches without any synthesis process. Subsequently

Liu et al (2005a) improved the accuracy to 88% by

adopting the kernel based nonlinear discriminant anal-

ysis (Mika et al, 1999) as the dimension reduction al-

gorithm. Wang and Tang (2009) then achieved an ac-

curacy of 96.3% classified by random sampling linear

discriminant analysis (Wang and Tang, 2006). Consid-

ering the sketches of above database are in a relative

simple structure, the multimedia lab of Chinese Uni-

versity of Hong Kong further released the Face sketch

FERET database (CUFSF) (Zhang et al, 2011c), which

includes 1,194 persons in the FERET database (Phillips

et al, 2000). Each person in the CUFSF database has a

photo with lighting variation and a sketch with shape

exaggeration drawn by the artist.

7 Promising Future Directions and Tasks

In Section 6, we saw that when each method is evalu-

ated by visual perception in a subjective image qual-

ity assessment manner, it is expensive and may eas-

ily become tedious. Thus, an automatic objective im-

age quality assessment metric is essential in evaluating

the performance of the FH algorithm. Classical full ref-

erence metrics such as PSNR, MSE, and RMSE are
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Table 2 Evaluation Summary and Comparison of Different FH Methods

Method Database Category Subjective Metric Objective Metric

Baker and Kanade (2000a,b, 2002) FERET (Philips et al, 1997) BI(GP) VP RMSE

Su et al (2005) FERET, AR (Martinez and Benavente, 1998), Cohn Kanade (Kanade et al, 2000), PIE (Sim et al, 2002) BI(GP) VP N/A

Wang and Tang (2009) CUFS (Wang and Tang, 2009) BI(MRF) VP FR

Liu et al (2001) FERET, AR BI(MRF) VP N/A

Gao et al (2008b,c) (Gao et al, 2008b,c) BI(E-HMM) VP UIQI, FR

Park and Lee (2008) KF (Roh and Lee, 2007), XM2VTS (Messer et al, 1999), MPI (Vetter and Troje, 1997) SL(LSL) VP SSIM, FR

Wang and Tang (2005) CUFS Student (Wang and Tang, 2003) SL(LSL) VP RMSE, FR

Liu et al (2005c) FERET SL(LSL) VP N/A

Ma et al (2010b) CAS-PEAL (Gao et al, 2008a), FERET, CMU (Rowley et al, 1998), Stereo-pair (Fransens et al, 2005) SL(NML) VP PSNR

Zhuang et al (2007) Asian Face (Dong and Gu, 2001) SL(NML) VP PSNR

Hu et al (2011) FERET, AR, GA (Nefian, 1997) SL(NML) VP PSNR, SSIM

Liu et al (2007b) CUFS C-BI-SL VP RMSE

Chakrabarti et al (2007) FERET YALE (Georghiades et al, 2001) C-BI-SL VP SSIM, MSE

Zhang and Cham (2011) FERET C-BI-SL VP SSIM, MSE

Gunturk et al (2003) YALE, CMU, AR, HRL (Hallinan, 1994) C-BI-SL VP FR

Wang et al (2011) CUFS Student (Tang and Wang, 2002), VIPSL (Wang et al, 2011) SR MOS, VP FR

Yang et al (2008a) FRGC 1.0 (Philips et al, 2005) SR VP N/A

Chang et al (2010) CUFS Student SR VP N/A

Note: BI-Bayesian Inference, the notation in the parentheses denotes the sub-category, GP-Gradient-based Prior for data
modeling, VP-Visual Perception, N/A-Not Available, FR-Face Recognition Rate, SL-Subspace Learning, LSL-Linear
Subspace Learning, NML-Nonlinear Manifold Learning, C-BI-SL-Combination of Bayesian Inference and Subspace

Learning, SR-Sparse Representation.

holistic and cannot yet reflect the detailed information

that is needed to assess image quality. This point is dis-

cussed in detail by Wang and Bovik (2009). Therefore,

an effective, objective image quality assessment met-

ric that has much better correlation with subjective vi-

sual perception needs to be developed. Several metrics

such as UIQI, SSIM, VIF (Sheikh and Bovik, 2006), and

FSIM (Zhang et al, 2011b) have been proposed; how-

ever, none of them is specialized for hallucinated face

images, which have their own unique characteristics due

to both the structure of the face and the property of the

hallucinated image. Hence, synthesized face image qual-

ity assessment may be a promising and helpful research

direction.

Recently, sparse representation has achieved great

progress in computer vision (Wright et al, 2010) and

data analysis (Zhou and Tao, 2013). In particular, meth-

ods have been proposed for image reconstruction and

state-of-the-art results have been obtained (Mairal et al,

2008; Marial et al, 2008). Yang et al (2008b) applied

the idea of the sparse representation model with a cou-

pled learning process to face image super-resolution and

achieved good results. Yang et al.’s method (2008b) is

not the end of the application of sparse representation

to FH, since the method considers less prior knowledge

of the face image than the face images provide, and the

effective exploration of the sparsity of face images is

therefore an interesting problem to resolve.

From Table 2, we find that most image databases

used for face image super-resolution were not sampled

from surveillance camera videos, since the main appli-

cation of face image super-resolution is face recogni-

tion or face retrieval from a monitor. Therefore, an im-

age database extracted from surveillance videos should

be constructed that incorporates pose, illumination, ex-

pression, and view variant images. Although the CUFS

database has been constructed, there is only one sketch

with neutral expression and front view corresponding

to each photo in the database for face sketch-photo

synthesis; therefore, constructing a database contain-

ing several sketches corresponding to each photo across

multiple modalities is essential. Furthermore, these two

databases will stimulate the progress of study on multi-

modality FH and recognition.

Though FSR and FSPS share a similar mathemati-

cal form, they are intrinsically different. The first differ-

ence comes from how much the face alignment precision

affects the hallucination. Face alignment is a critical

preprocessing phase before FH, because imprecise local-

ization of the facial features (landmarks) degrades the

subsequent processes. Experiments (Liu et al, 2007a;

Jia and Gong, 2008; Luo et al, 2012) indicate accu-

rate face alignment is more important for FSR than for

FSPS. Because face sketches and corresponding photo

counterparts are generally in high or moderate resolu-

tion, their alignment is relatively easier. Even a small

amount of misalignment can dramatically degenerate

the FSR performance. Low-resolution images usually

have blurring effect and contain limited structure infor-

mation, and so many ambiguities exist for facial land-

mark localization which raises the alignment of low-

resolution face images a challenging problem. Another

difference lies in whether they need to handle the prob-

lem of shape exaggeration. Artists usually exaggerate

some distinctive facial features when they draw sketches,

which results in some deformation. Wang and Tang

(2009) explained that ”if a face has a big nose in a

photo, the nose drawn in the sketch will be even big-

ger”. Consequently, in contrast to FSR, FSPS needs to

handle the problem of shape exaggeration.
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From above analysis, precisely detecting facial land-

marks on low-resolution images to perform face align-

ment is still a challenging problem. Moreover, the shape

exaggeration causes nonlinear transformation between

sketches and photos. Existing FSPS approaches rarely

consider the nonlinear mapping resulted by shape ex-

aggeration. Although Tang and Wang (2003) consid-

ered the global shape information in their work, the

mapping relationship between sketches and photos were

assumed to be linear. Thus, effective face alignment

on low-resolution images and appropriately modeling

the nonlinear relationship between sketches and pho-

tos resulted by shape exaggeration are two promising

research directions.

Besides learning-based face sketch synthesis meth-

ods surveyed in this paper, some sketch synthesis algo-

rithms are not learning-based (Kang et al, 2005; Wen

et al, 2006). Whatever these methods are, they are ap-

plicable to general images. However, they can hardly

handle the styles by different artists. This is because

different artists may have different representation and

exaggeration styles for many parts of a face. For exam-

ple, different artists may render the nose, eye, mouth

and other parts of a face differently. It may be even

more difficult to model these different artistic styles

than model the shape exaggeration. To learn these dif-

ferent styles, some discriminative information among

them may favor the synthesis process since it can assist

to choose a sketch part (here face part can be a face

patch or a holistic face) from sketches of desired styles.

Patch-based methods have been widely applied to

face hallucination due to their ability to represent the

local facial features. However, these methods neglect

the global shape information describing the holistically

geometric relationships between the individual facial

features. Especially in face sketch-synthesis, state-of-

the-art methods adopt the patch-based strategies which

actually loss some important information about global

shape exaggeration. Tang and Wang (2002, 2003, 2004)

proposed an eigentransform scheme to take the global

shape exaggeration into account. Nevertheless, local fa-

cial features were lost and this strategy could hardly

distinguish subtle individual facial feature variations.

Therefore, designing an approach to integrate both the

information of local neighborhood and the configura-

tion of global shape exaggeration is important for face

sketch synthesis.

As is shown in (Liu et al, 2007b; Wang et al, 2011;

Zhang et al, 2011a), most available methods for face

sketch-photo synthesis averaged the overlapping regions,

which may result in over-smoothing, and the residual

image could therefore be learned from the training im-

ages to compensate for the lost high frequency informa-

tion. However, residual images were learned from the

sketch-photo pairs rather than the training synthesized

images and corresponding truth images. Thus, a two-

step face sketch-photo synthesis framework such as this

needs be explored further.

In recent years, many FH methods have been de-

veloped and obtained promising performance for face

recognition under well-controlled conditions. In partic-

ular, FSPS can significantly improve the face recog-

nition accuracy comparing with direct recognition us-

ing sketch under well-controlled condition (Wang and

Tang, 2009). However, this does not suggest that FH is

a solved problem. The recognition performance degen-

erates when encountering faces collected from uncon-

trolled conditions such as faces with non-frontal views,

expression and lighting variations due to the intrinsic

non-rigidness of faces and extrinsic uncontrollable envi-

ronment conditions. Though some valuable results for

face hallucination have been obtained to handle one

or two types of the aforementioned variations (Li and

Lin, 2004; Jia and Gong, 2005, 2006, 2008; Ma et al,

2010a; Zhang et al, 2010), so much effort is required to

face the real challenges when attempting to handle mul-

tiple variations simultaneously in practice. Especially,

designing effective approaches for modeling these varia-

tions is essential to apply FH in various real-world tasks

and is a focus of the future research.

8 Conclusion

In this paper, we reviewed the topic of face hallucina-

tion incorporating face image super-resolution and face

sketch-photo synthesis. The methods utilized are clas-
sified into four categories according to the framework

under which they fall: Bayesian inference framework,

subspace learning framework, combination of Bayesian

inference and subspace learning framework, and sparse

representation-based methods. Bayesian inference frame-

work-based approaches can be grouped into three sub-

categories: gradient-based gradient prior model-based

methods, MRF-based methods, and E-HMM-based meth-

ods. Subspace learning-based algorithms are divided

into linear subspace learning-based methods and non-

linear subspace learning-based methods. By means of a

comprehensive analysis and comparison of these meth-

ods, we found that Bayesian inference methods have

the disadvantage of high computation cost and heavy

memory load, although neighbor compatibility reduces

the boundary noise (except for the gradient-based prior

for data modeling-based methods). We also found that

subspace learning-based methods make strict assump-

tions about the geometric structure of two image spaces

and low computation cost. The combination of these
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two frameworks may result in a more accurate method

(except for the LLE-based methods in this category).

Although different from subspace learning-based meth-

ods, sparse representation-based methods also assume

that two image spaces share a similar geometric struc-

ture; however, this assumption is constrained on two

sparse spaces. This relaxes the original, much more re-

strictive assumption to some extent. Finally, we pro-

posed several promising future directions and tasks,

and we believe this survey will help readers to gain a

thorough understanding of the face hallucination re-

search landscape. Although face super-resolution and

face sketch-photo synthesis share the similar framework,

this does not mean that methods which work well for

face super-resolution also work well on face sketch-photo

synthesis and vice versa. This indicates that applying

face super-resolution techniques directly to face sketch-

photo synthesis may not always achieve good perfor-

mance and vice versa. This may be due to the fact that

though down-sampling and blurring effect are the mian

factors of difference between low-resolution and high-

resolution images, they have the similar texture or in-

tensity expressions. However, sketches and photos are

in quite different texture expressions.
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